Journal of

The Chemical Society,

Chemical Communications

NUMBER 14/1977

20 JULY

Nonacarbonyl(dinitrosyl)triosmium: a New Nitrosyl Cluster †

By SUMIT BHADURI, BRIAN F. G. JOHNSON,* JACK LEWIS,* DOUGLAS J. WATSON, and CAMILLO ZUCCARO (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

IN 1972 Collman and his co-workers¹ reported that dodecacarbonyltriosmium reacts with nitric oxide under moderate conditions (60 lb in², 100 °C, 24 h) to produce low yields (*ca.* 13%) of the compound $[Os_3(CO)_{10}(NO)_2]$ (1). The structure of this compound was shown to possess C_{2v} symmetry and resembles $[Fe_3(CO)_{12}]$ with a double-nitrosyl bridge in place of the double carbonyl bridge. We report the synthesis of a new, but closely related, dinitrosyl cluster of osmium $[Os_3(CO)_9(NO)_2]$, which contains two terminally bound NO groups and which may be regarded as pseudo- $[Os_3(CO)_{12}]$ with two NO groups replacing three CO groups about one osmium atom.

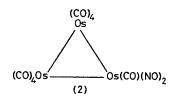


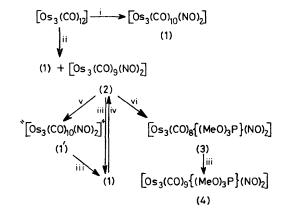
FIGURE. Probable structure of [Os₃(CO)₉(NO)₂].

On passing nitric oxide through a solution of $[Os_3(CO)_{12}]$ in n-octane at 126 °C, the complex $[Os_3(CO)_9(NO)_2]$ (2) is produced together with small amounts of the previously reported¹ dinitrosyl cluster $[Os_3(CO)_{10}(NO)_2]$ (1). After separation on silica, complex (2) may be obtained as dark red crystals from pentane and has been characterised on the basis of analytical and spectroscopic data. On electron

† No reprints available.

impact (80 eV) the molecular-ion $[Os_3(CO)_9(NO)_2]^+$ is observed together with ions produced by the stepwise loss of nine CO and two NO groups. The i.r. spectrum of (2) is clearly different from that of (1) and shows a complicated series of nine CO bands, none in the bridging region, and two nitrosyl bands at 1731 and 1705 cm⁻¹ (see Table). Although it is difficult to characterise the NO bonding type solely on the basis of the N–O stretching vibration, these bands are in the region usually associated with a terminal

3	TABLE. I.	r. spectroscopic data for complexes (1)—(4).ª	
	Complex	v_{CO}/cm^{-1} v_{NO}/cm^{-1}	
	(1) ^{b,c}	2108w, 2068s, 2063s, 1503m, 1484s 2054s, 2025s, 2017w, 2008s, 1996m	
	(1')	2069w, 2033m, 2020vs, 1996vs	
	(2)	2117m, 2073vs, 2067s 1731s, 1705s 2033vs, 2023s, 2019s, 2013m, 2083m, 1991w	
	(3)	2010 an, 2050 an, 1551 and 2010 and 201	
	(4) ^b	2000m, 2063vs, 2033m, 1470m, 1455m 2019vs, 2011s, 2001s, 1995s, 1979s	
h	medium.	vs very strong; s strong; w weak; all spect	•


^a m, medium; vs, very strong; s, strong; w, weak; all spectra were taken in cyclohexane unless indicated otherwise. ^b v_{NO} refers to spectra of KBr disc. ^c v_{CO} of (1) refers to spectrum taken in tetrachloroethylene.

and linear M–N–O (formally NO⁺) arrangement. The ¹³C n.m.r. spectrum (CFT, XL-100) of an isotopically enriched sample (*ca.* 60% ¹³CO) in [²H₈]toluene at 40 °C exhibits four signals of relative intensity 4:2:2:1. These data may be taken to indicate that the complex is of low symmetry and are best interpreted in terms of (2) involving one

 $Os(CO)(NO)_2$ and two $Os(CO)_4$ units, which is, in effect, pseudo- $[Os_3(CO)_{12}]$ with three CO groups replaced by two NO groups (Figure).

Carbon monoxide reacts with (2) in cyclohexane at 81 °C to give $[Os_3(CO)_{10}(NO)_2]$ in quantitative amounts. This reaction is not simple and we have evidence to suggest the formation of an unstable intermediate complex. Thus at 25 °C, (2) in cyclohexane slowly reacts with CO to produce a solution which exhibits an i.r. spectrum (Table) unlike that of either (1) or (2). In particular no bands which can be easily assigned to co-ordinated NO groups are apparent. However, on removal of solvent (2) is reformed quantitatively and if the temperature of the solution is raised to 81 °C and the reaction with CO continued, high yields (ca. 90%) of (1) are obtained. Clearly these observations confirm that NO is present in the intermediate which we tentatively formulate as the adduct $[Os_3(CO)_{10}(NO)_2]$ (1'), a complex with the same molecular formula but different structure to Collman's compound (1). We have also examined the reaction of (2) with (MeO), P at 25 °C to produce $[Os_3(CO)_8(NO)_2\{(MeO)_3P\}]$ (3) which, according to its i.r. spectrum (Table), contains two terminally bound NO groups. In this case no evidence for the formation of an intermediate complex was found. However, at 100 °C in n-heptane this complex reacts with CO to produce [Os₃-(CO)₉(NO)₂{(MeO)₃P}] which, on the basis of the i.r. spectrum, contains a double-nitrosyl bridge.

We believe that these reactions are best interpreted as shown in the Scheme. Complex (2) undergoes addition of a donor ligand L [L = CO or $(MeO)_3P$] to form an unstable

SCHEME. i, NO, C_6H_6 , 60 lb in², 100 °C; ii, NO, n-octane, 126 °C; iii, CO, cyclohexane, 81 °C; iv, n-octane, 126 °C; v, CO, cyclohexane, 25 °C; vi, (MeO)₈P, cyclohexane, 25 °C.

adduct $[Os_3(CO)_9(NO)_2]$ ·L of unknown geometry which may either undergo CO loss to form $[Os_3(CO)_8(NO)_2L]$ or rearrangement to produce the double-nitrosyl bridged compound $[Os_3(CO)_9(NO)_2L]$. Finally we note that $[Os_3(CO)_{10}$ - $(NO)_2]$ (1) undergoes CO-elimination at 126 °C in n-octane to produce small amounts of (2).

We thank the S.R.C. for support and Johnson, Matthey and Co. for the generous loan of OsO_4 .

(Received, 28th February 1977; Com. 173.)

¹ J. R. Norton, J. P. Collman, E. Dolcetti, and W. T. Robinson, Inorg. Chem., 1972, 11, 382.